

Load Models for Performance Testing with Incomplete Empirical Data
© PerfTestPlus, Inc. 2011 1

Load Models

by:

R. Scott Barber

Load Models for Performance Testing with
Incomplete Empirical Data

Abstract: For all that it is a common topic of conversation and concern
among people and organizations that build or depend on web-based
applications, testing a website in such a way that the test can reliably predict
performance is still often more of an art than a science. More than a few
brilliant minds have dedicated their careers to this complex topic. Several
have published detailed and mathematically sound methods to plan for,
predict and model performance characteristics very accurately… as long as
there is sufficient empirical data to work from.

In this paper, we will first briefly explore the concepts, strengths and
applications of Connie Smith’s Software Performance Engineering (SPE)
methods for creating well performing web-based applications. Then we’ll
look at Alberto Savoia’s approach to creating representative load models
from the analysis of existing patterns to then be applied by load generation
tools. Next, we’ll look at Daniel Menasce’s techniques for building load
models of existing sites that both predicts bottlenecks before they happen and
generate the data necessary to prevent or push out that bottleneck before the
real load gets great enough to show any symptoms of the bottleneck. Then,
we’ll look at how J.D. Meier ties these methods together into a single end-to-
end approach. As you will see, these are all very powerful tools that
performance testers and analysts have at our disposal.

After reviewing these methods, you will also see that all of these approaches
depend on a fairly significant amount of empirical data that is rarely available
to the individuals who are doing most of the performance testing and analysis
of web-based applications in the industry today – consultants. That is where
the insight in this paper actually begins, with the question of “How do I
predict actual performance, when I don’t have enough data to model the load
accurately?” We will explore various methods that have proven valuable
both individually and collectively for some of the top performance
test/analysis consultants in the world. Finally, we will tie it all back together
by demonstrating how parts and concepts from each of these methods can be
blended together when there is not enough data to apply them exactly as
described by their authors, based on the context of the task at hand, to Create
Effective Load Models for Performance Testing with Incomplete Empirical
Data.

Load Models for Performance Testing with Incomplete Empirical Data
© PerfTestPlus, Inc. 2011 2

SPE Overview:

In her book Performance Solutions: A Practical Guide to Creating Responsible, Scalable Software,
Connie U. Smith, PhD., details how to apply the discipline known as Software Performance Engineering
(SPE). She describes this discipline in this way:

“SPE is a comprehensive way of managing performance that includes principles for creating
responsive software, performance patterns and antipatterns for performance-oriented design,
techniques for eliciting performance objectives, techniques for gathering the data needed for
evaluation , and guidelines for the types of evaluation to be performed at each stage of the
development process.
“SPE is model-based… By building and analyzing models of the proposed software, we can explore
its characteristics to determine if it will meet its requirements before we actually commit to building
it.”1

I often refer to SPE as an “Architect for Performance” method. This method includes:

• Modeling the performance of critical use cases by estimating performance characteristics such as:
o Number of CPU cycles needed per activity
o Amount of Disk I/O required
o Number of messages sent between components or tiers
o Time taken by each of these activities

• Summing the total estimated time and resources used by each activity

Figure 1: Example Overhead Matrix2

• Modeling the entire application (via UML)
• Grouping and adding the activity times and resources from the user’s perspective
• Comparing those composite metrics to the performance goals for a single user
• Adding up those metrics across the expected number of users and usage patterns to evaluate if the

proposed architecture will have the resources available to handle the anticipated volume.
• Validating initial estimates as software is being built, tuning software and hardware and modifying

the model as needed.

1 Smith, 2002
2 Smith, 2002

Load Models for Performance Testing with Incomplete Empirical Data
© PerfTestPlus, Inc. 2011 3

I have seen these concepts applied in the field both extremely effectively and extremely poorly. All of the
teams that applied SPE with superior results took to heart the single paragraph (section 15.3.3) in the book
that addresses the core of this paper, which says:

“Performance testing is vital to confirm that the software’s performance actually meets its
performance actually meets performance objective, and that the models are representative of the
software’s behavior.”3

The reason this is so vital is because models are not flawless and without confirmation of the model’s
predictions one cannot know if there are flaws in either the model or in the implementation of that model.
Naturally, this assumes that the performance test itself is accurate and while Chapter 3 details how to
model the usage of the application in terms of performance with UML, the book does not discuss how to
determine or estimate actual usage of the application under test.

Savoia Overview:

“In order to be worth anything, I believe that Web site load tests should reproduce the anticipated
loads as accurately and realistically as possible. In order to do that you will need to study
previous load patterns and design test scenarios that closely recreate them. This is a task that will
require a serious amount of hard work, intelligence, intuition, and communication skills.”4

In his 2001 article for STQE, Web Load Test Planning, Alberto Savoia outlines his approach for
determining the anticipated load of an application, and creating load tests to accurately represent this load.
His preferred method of determining actual load is by analyzing log files from the existing version of the
application. Unfortunately, in the field, most applications being tested either are first generation
applications, or there are no log files to analyze.

In the absence of relevant log files, Savoia recommends generating log files via use of a limited beta
release of the application to a representative sampling of users. Savoia goes on to demonstrate how to
create what he terms a “Web site Usage Signature” or WUS. WUS is a method of extracting a model of
the web sites actual usage based on user sessions and page request distributions. He goes on to discuss
how to estimate overall traffic growth and peak usage levels. Each of these methods have been in
common use by performance testers since WUS was first publicized and are commonly considered to be
the most straightforward and accurate method to create performance test models where relevant usage
data (in this case log files) exist and are accessible to performance testers.

Over the past several years, I have had sporadic communication with Alberto Savoia, during which time
we have discussed this and his other performance testing theories. During these discussions, he agreed
that without actual usage data, empirical data, his WUS will not help you determine actual usage. When
asked how often he experienced this situation, he said ‘very rarely’. My experience, of nearly 50
performance testing projects and indirect experience with over 100 more, I have only once had the

3 Smith, 2002
4 Savoia, 2001

Load Models for Performance Testing with Incomplete Empirical Data
© PerfTestPlus, Inc. 2011 4

opportunity to analyze log files from a similar enough previous version of the application under test for it
to accurately predict its future use. In all other cases, additional data was required. During our
discussions, we came to the conclusion that the reason for this difference was that his experience was
filled with high-end clients, before the internet became a mainstream Business to Client tool while my
experience is filled with more ‘typical’ clients of the dot-com era. His clients were willing and able to
fulfill his request for data collection through beta-release, mine didn’t have the money to conduct
performance testing, let alone conduct an extended, unscheduled beta test and couldn’t afford to delay
release due to competitive pressures. The end of the dot-com era has not (at least not yet) increased
budgets nor extended release schedules, once again resulting in not having enough empirical data, in the
majority of cases, to apply this approach as written.

Modeling for Capacity Planning Overview:

Daniel Menasce is an ACM fellow and a university professor who is widely recognized for his academic
contributions to application performance. His methods and approach have been repeatedly hailed as both
detailed and accurate. In his book Scaling for E-Business, he takes a detailed look at capacity planning
and scalability. The approach begins with models of both the application’s usage and architecture. His
usage models are similar to Savoia’s WUS and his architectural models are similar to Smith’s, but both
rely on existing empirical data. Later, he mentions that forecasting future load levels and usage models is
critical to capacity planning and details several mathematical methods to conduct that forecasting
including Regression, Moving Averages and Exponential Smoothing. Of course, each of these methods
requires a significant and accurate base of historical data.

Given actual usage data to evaluate current performance metrics, and a forecasting algorithm that yields
high confidence predictions of future usage (and no significant changes to the application’s architecture
and/or functionality during the period of the forecast) Menasce’s methods of applying queuing theory and
performance laws to capacity planning are nearly infallible. Yet again, however, without empirical data
these theories, laws and equations will only produce results and predictions as accurate as the input data.

Overview of an End-to-End Approach:

There are surprisingly few publications that discuss the integration of these phases of an application’s
performance lifecycle. Several publications discuss one of the phases in detail and mention that the other
two are important, but don’t actually demonstrate how it is accomplished. J.D. Meier of Microsoft has
produced the first publicly available literature that includes detail about the application of all three phases
to a “real-life” in the 1120 page MSDN guide titled Improving .NET Application Performance and
Scalability.

Load Models for Performance Testing with Incomplete Empirical Data
© PerfTestPlus, Inc. 2011 5

This guide takes the reader through the entire life cycle of a .NET application, from conception through
maintenance, with respect to performance. While not explicitly stated, much of the guide implies that
expected load and usage model is a given, but in the chapter dedicated to building performance tests, it
states the following:

“You can determine patterns and call frequency by using either the predicted usage of your
application based on market analysis, or if your application is already in production, by analyzing
server log files. Some important questions to help you determine the workload for your application
include:

• What are your key scenarios?...
• What is the maximum expected number of users logged in to your application?...
• What is the possible set of actions that a user can perform?...
• What are the various user profiles for the application?...
• What are the operations performed by an average user for each profile?...
• What is the average think time between requests?...
• What is the expected user profile mix?...
• What is the duration for which the test needs to be executed?...”5

Even though each question above has roughly a paragraph of explanation and example associated with it,
the answer to “How do I collect that data?” is not addressed.

Commonality of These Approaches:

While there are many commonalities across these approaches, the one that we are interested in for the
purposes of this paper are those concerning the creation of models that accurately represent actual usage.
In each case above, we found that while the author acknowledged that empirical data is not always
available, they presented their methods and approaches assuming the performance tester would be able to
obtain or create an accurate model in one way or another. Each method allows for some degree of
estimation or “educated guessing”, but none present a method for doing so. The assumption appears to be
that a significant amount of empirical data will be available.

The other commonality that is worthy of note here is that each author’s methods require performance
testers to have a stronger background in both mathematics and computer engineering than only a small
handful do. This means that a significant proportion of those who are actually doing the performance
testing simply don’t have the skills necessary to apply some of the techniques recommended by the
authors. As much of the software development industry has started viewing performance testing as a
commodity service, it has fallen on the shoulders of the “expert consultants” to teach the employee tasked
with performance testing the application as an “additional duty” how to do an adequate job – in two
weeks or less.

5 Meier, 2004

Load Models for Performance Testing with Incomplete Empirical Data
© PerfTestPlus, Inc. 2011 6

Why Empirical Data is Uncommon in Practice:

The problem with this assumption is that it simply isn’t consistent with the state of the practice. The
majority of the companies doing performance testing are not the Amazon’s, e-bay’s and yahoo’s of the
world, but rather they are the edoc’s, Cyberserve’s and Indus International’s. Each of these three
companies were clients of mine that hired me less than 6 weeks before “go live” day with brand new
applications, no approach to ensuring application performance and no empirical usage data available.
This situation is the norm, not the exception.

Instructing these companies to do a beta rollout of 10-20% of their projected customer base to determine
usage patterns would accomplish nothing more than convince them that I was not the right consultant for
the job and lead them to choose someone who claimed either that they could estimate the usage levels and
patterns for them, or that the actual usage pattern doesn’t really matter for the purposes of performance
testing.

The reasons for this are simple. Small companies:

• Can’t afford the costs of the detailed approaches we’ve discussed.
• Can’t (or aren’t willing) to dedicated the time required to “do it right”.
• Don’t have staff who understand either the performance testing or the mathematical principals

involved with the detailed approaches.
• Won’t performance test often enough to justify hiring or training a full time performance tester.
• Don’t feel they need that degree of accuracy. They “just want to know….”

o Will my site handle 500 users?
o Is it fast enough?
o How many users before it crashes?
o When it fails, where will I need to add another server?
o Did I purchase enough bandwidth from my ISP?

The belief is that those questions can be answered in a few weeks (at most) for a few thousand dollars.
While it may be true that any one of these questions could be answered in just a few weeks (assuming all
the necessary information is immediately available, the environment is available and configured correctly,
the necessary tools are in place, etc.) The truth is that most of these companies aren’t even sure what the
value is of the question they are asking, let alone what question they should be asking.

Develop an Accurate Performance Model Without all of the Data

It should be obvious that even though those who have written some of the most read, respected and
referenced material on performance testing have not written a tangible method for handling a lack of
empirical data, the testers in the field have been doing exactly that for years. Through a combination of
my personal experiences with performance testing projects, collaboration with some of the top
performance testing practitioners in the world and the significant feedback from the readers of my articles,
I submit that the following approach is compatible with the methods of all the authors mentioned in this
paper and provides both a reasonable approximation of actual performance as well as addressing the

Load Models for Performance Testing with Incomplete Empirical Data
© PerfTestPlus, Inc. 2011 7

concern of “what if our load and usage assumptions are wrong?”. The approach does not require a
significant background in mathematics to apply and can be applied quickly.

This approach can be summarized as follows:

• When testing a web site already in production, you can extract the actual usage, load
values, common and uncommon usage scenarios (user paths), user delay time between
clicks or pages, session abandonment and input data variance to name a few directly from
log files. Many web sites are instrumented web traffic monitoring software such as
WebTrends or LiveStat that can often provide much of this data directly.

• Whenever testing a web site with a significant amount of new features/functionality, use
interviews. By interviewing the individuals responsible for selling/marketing the new
features, you will find out what features/functions are going to be expected, and therefore
most likely used. By interviewing existing users, you can determine which of the new
features/functions they believe they are most likely to use.

• When testing a pre-production web site already the best option is Savoia’s, which is to roll
out a (stable) beta version to a group of representative users, roughly 10-20% the size of
the expected user base and analyze the log files from their usage of the site.

• In the absence of log files, or the time and resources for a detailed log analysis, industry
“standard” and/or competitor’s metrics and statistics can often provide a valuable starting
point. Companies such as Nielsen//NetRatings, Keynote, or MediaMetrix publish this type
of data publicly on their sites.

Figure 2: Example Data from NetRatings

Load Models for Performance Testing with Incomplete Empirical Data
© PerfTestPlus, Inc. 2011 8

Figure 3: Example Data from Keynote

Figure 4: Example Data from Media Metrix

These charts alone provide a wealth of information upon with to start building a load and
usage model. Although these figures are not specifically from the web site under test they
work quite well as first approximations.

Load Models for Performance Testing with Incomplete Empirical Data
© PerfTestPlus, Inc. 2011 9

• If you have no log files and don't feel that the metrics from the companies above are
representative, you can run simple in-house experiments using employees, customers,
clients, friends, or family members to determine, for example natural user paths and the
page-viewing time differences between new and returning users. This method is also
known as the "clipboard and stopwatch" method, for obvious reasons. I have found this to
be a highly effective method of data collection for web sites that have never been live, as
well as validation of data collected using other methods.

• As a last resort, you can use your intuition, or best guess, to estimate based on your own
familiarity with the site.

• Create visual models and circulate them to both users and stakeholders to review/comment.
Ensure the model is intuitive to both non-technical users, technical designers and everyone
in between. Also ensure the model contains all of the supplementary data needed to create
the actual test.

New User
(NU)

Member (M)

Administrator
(A)

Vendor (V)

20%

70%

4%

6%

Home Page

Admin
Page (10%)(A/V)

 Run Report (6%)

Report Type

25%

Exit

 Cancel Order (1%)

(V)

 Add Book (1%)

Check Status (2%)

Order #

Book Data

Update Status(1%)

3%

Logout

7%

A/V Login

(NU/M)

Search (75%)

Criteria
Exit

20%33%

Add to
Cart (70%)

Exit

5%

(M) Login (39%)

Credentials

(A)

In Stock?

No

Yes

(NU) Create
Account (11%)

Acct Data
Save (21%)

Order (29%) Exit

15% 35%

Logout

(M)

Login (15%)

Credentials

Update Account (5%)

Check Order
Status (10%)

Acct Data

Order #

Order #

Exit

4% 11%

Logout

Figure 5: Example Visual Model for Online Bookstore

Load Models for Performance Testing with Incomplete Empirical Data
© PerfTestPlus, Inc. 2011 10

 Figure 6: Supplementary Data for Online Bookstore Model

• Based on all data collected, create not fewer than three usage models (based on usage
variance, not volume/load variance). Those usage models are:

 Anticipated Usage

 Best Case Usage in terms of performance (i.e. weighted heavily in favor of low
performance cost activities)

 Worst Case Usage in terms of performance (i.e. weighted heavily in favor of high
performance cost activities)

Load Models for Performance Testing with Incomplete Empirical Data
© PerfTestPlus, Inc. 2011 11

Figure 7: Sample “Best/Expected/Worse” Case Results Chart

• Model load patterns both separate from and together with usage patterns over time.

Figure 8: Sample Load Model over One Day

Load Models for Performance Testing with Incomplete Empirical Data
© PerfTestPlus, Inc. 2011 12

Project Costing (daily)

Main Nav Page
(100%)

Logout
(66%)

Projects Home Projects Home

Vary Options

Forcast Projects (45%)

Vary Options Corrections (5%)

New Costing Activity (33%)

(Review - Sign off)Reporting(10%)

Maintain Projects (25% - 20 User Maximum)

Budget Projects (20%)
Transfer (5%)

Update (10%)

Vary Options

Vary Options

Vary Attributes

Project Costing (start of month)

Main Nav Page
(100%)

Logout
(75%)

Projects Home Projects Home

Vary Options

Forcast Projects (40%)

Vary Options Corrections (25%)

New Costing Activity (25%)

(Review - Sign off)Reporting (45%)

Maintain Projects (5% - 20 User Maximum)

Budget Projects (10%)

Transfer (5%)

Update (5%)

Vary Options

Vary Options

Vary Attributes

Figure 9: Sample Usage Model Variance by Time of Month

• Present results from each usage model to the stakeholders along with the models and be
prepared to modify the model. Experience shows that by the time the results are gathered,
the best available information about the anticipated web site usage has often changed.

An important note to this approach is that it's critical to model system-intensive activities even if they
aren't the most popular activities on the web site. For instance, if the “managing business accounts”
represents only 1% of all user activity, one could argue that it could be left out of the model. But what if
this activity includes generating monthly usage reports that require the system to extract and compile
large amounts of data from the database and then format it for display? While 1% of all users surfing to a
static page won't cause a noticeable change in performance, 1% of all users running a monthly usage
report may cause significant performance degradation. Therefore, this system-intensive activity must be
included in at least one of the models.

Load Models for Performance Testing with Incomplete Empirical Data
© PerfTestPlus, Inc. 2011 13

Use with Methods Expecting Empirical Data:

(Treat data as if empirical, test with expected case until tuned to or near satisfaction, use as baseline, then
test with worst/best case scenarios, compare)

Conclusion:

As critical as it is to creating load and usages models that will predict performance accurately, the data
necessary to create these models is typically not directly available to the individuals actually conducting
the testing, if it exists at all. Since all of the generally accepted methods and techniques for testing and
predicting application performance depends on usage and load models, an alternative to empirical data is
needed, but none of the most referenced material about performance testing gives the tester an approach
to follow if empirical data is unavailable.

In this paper, we explored an approach to creating load and usage models that is a quick and effective
substitute for empirical data. This approach has been applied to and enhanced as a result of well over a
hundred performance testing projects conducted by at least ten different consultants that I am aware of. In
none of those cases was the approach to model creation blamed for unreliable or inaccurate results when
used in conjunction with Smith, Savoia or Menance’s published methods and techniques.

About the Author
Scott Barber is a prominent thought-leader in the area of software system performance and testing
software systems in general, Scott Barber, founder and Chief Technologist of PerfTestPlus, makes his
living writing, speaking, consulting, and coaching with the goal of advancing the understanding and
practice of software testing. Scott has contributing to four books (co-author, Performance Testing
Guidance for Web Applications, Microsoft Press; 2007, contributing author Beautiful Testing, O’Reilly
Media; 2009, contributing author How to Reduce the Cost of Testing, CRC Press; 2011, author Web Load
Testing for Dummies, John Wiley & Sons, Inc.; 2011), composed over 100 articles and papers, delivered
keynote addresses on five continents, served the testing community as the Executive Director of the
Association for Software Testing, and co-founded the Workshop on Performance and Reliability.

Today, Scott is focused on applying and enhancing his thoughts on delivering world-class system
performance in complex business and technical environments with a variety of clients and is actively
building the foundation for his next project: driving the integration of testing commercial software
systems with the core objectives of the businesses funding the creation of those systems.

When he’s not “being a geek”, as he says, Scott enjoys spending time with his partner Dawn, and his sons
Nicholas and Taylor at home in central Florida and in other interesting places that his accumulated
frequent flier miles enable them to explore.

http://www.perftestplus.com/
http://www.amazon.com/gp/product/0735625700?ie=UTF8&tag=perftestplus-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0735625700
http://www.amazon.com/gp/product/0735625700?ie=UTF8&tag=perftestplus-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0735625700
http://oreilly.com/catalog/9780596159825
http://www.amazon.com/How-Reduce-Cost-Software-Testing/dp/1439861552
http://www.associationforsoftwaretesting.org/
http://www.performance-workshop.org/

	About the Author

